NAME
dlaed0 - compute all eigenvalues and corresponding eigenvec-
tors of a symmetric tridiagonal matrix using the divide and
conquer method
SYNOPSIS
SUBROUTINE DLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE,
LDQS, WORK, IWORK, INFO )
INTEGER ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
INTEGER IWORK( * )
DOUBLE PRECISION D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS,
* ), WORK( * )
#include <sunperf.h>
void dlaed0(int icompq, int qsiz, int n, double *d, double
*e, double *q, int ldq, double *qstore, int ldqs,
int *info) ;
PURPOSE
DLAED0 computes all eigenvalues and corresponding eigenvec-
tors of a symmetric tridiagonal matrix using the divide and
conquer method.
ARGUMENTS
ICOMPQ (input) INTEGER
= 0: Compute eigenvalues only.
= 1: Compute eigenvectors of original dense sym-
metric matrix also. On entry, Q contains the
orthogonal matrix used to reduce the original
matrix to tridiagonal form. = 2: Compute eigen-
values and eigenvectors of tridiagonal matrix.
QSIZ (input) INTEGER
The dimension of the orthogonal matrix used to
reduce the full matrix to tridiagonal form. QSIZ
>= N if ICOMPQ = 1.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix.
N >= 0.
D (input/output) DOUBLE PRECISION array, dimension
(N)
On entry, the main diagonal of the tridiagonal
matrix. On exit, its eigenvalues.
E (input) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal
matrix. On exit, E has been destroyed.
Q (input/output) DOUBLE PRECISION array, dimension
(LDQ, N)
On entry, Q must contain an N-by-N orthogonal
matrix. If ICOMPQ = 0 Q is not referenced. If
ICOMPQ = 1 On entry, Q is a subset of the
columns of the orthogonal matrix used to reduce
the full matrix to tridiagonal form corresponding
to the subset of the full matrix which is being
decomposed at this time. If ICOMPQ = 2 On
entry, Q will be the identity matrix. On exit, Q
contains the eigenvectors of the tridiagonal
matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. If eigen-
vectors are desired, then LDQ >= max(1,N). In
any case, LDQ >= 1.
QSTORE (workspace) DOUBLE PRECISION array, dimen-
sion (LDQS, N) Referenced only when ICOMPQ = 1.
Used to store parts of the eigenvector matrix when
the updating matrix multiplies take place.
LDQS (input) INTEGER
The leading dimension of the array QSTORE. If
ICOMPQ = 1, then LDQS >= max(1,N). In any case,
LDQS >= 1.
WORK (workspace) DOUBLE PRECISION array,
dimension (1 + 3*N + 2*N*lg N + 2*N**2) ( lg( N )
= smallest integer k such that 2^k >= N )
IWORK (workspace) INTEGER array,
If ICOMPQ = 0 or 1, the dimension of IWORK must be
at least 6 + 6*N + 5*N*lg N. ( lg( N ) = smallest
integer k such that 2^k >= N ) If ICOMPQ = 2, the
dimension of IWORK must be at least 2 + 5*N.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an ille-
gal value.
> 0: The algorithm failed to compute an eigen-
value while working on the submatrix lying in rows
and columns INFO/(N+1) through mod(INFO,N+1).
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |