The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dlacon (3)
  • >> dlacon (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dlacon - estimate the 1-norm of a square, real matrix A
    
    SYNOPSIS
         SUBROUTINE DLACON( N, V, X, ISGN, EST, KASE )
    
         INTEGER KASE, N
    
         DOUBLE PRECISION EST
    
         INTEGER ISGN( * )
    
         DOUBLE PRECISION V( * ), X( * )
    
    
    
         #include <sunperf.h>
    
         void dlacon(int n, double *v, double *dx, int *isgn,  double
                   *est, int *kase) ;
    
    PURPOSE
         DLACON estimates the 1-norm of  a  square,  real  matrix  A.
         Reverse  communication  is used for evaluating matrix-vector
         products.  If the initial call is made with  KASE  equal  to
         -255  and  subsequent  intermediate  calls made as described
         below then this subroutine is MT-safe, otherwise it  is  not
         MT-safe.
    
    ARGUMENTS
         N         (input) INTEGER
                   The order of the matrix.  N >= 1.
    
         V         (workspace) DOUBLE PRECISION array, dimension (N)
                   On the final  return,  V  =  A*W,   where   EST  =
                   norm(V)/norm(W) (W is not returned).
    
         X         (input/output) DOUBLE PRECISION  array,  dimension
                   (N)
                   On an MT-unsafe intermediate return, X  should  be
                   overwritten  by A * X if KASE=1, A' * X if KASE=2,
                   and DLACON must be re-called with  all  the  other
                   parameters  unchanged.  On an MT-safe intermediate
                   return, X should be overwritten by A * X  if  bits
                   8-11  of  KASE=0001,  A'  *  X  if  bits  8-11  of
                   KASE=0010, and DLACON must be re-called  with  all
                   the  other parameters unchanged.  The MT-safe mode
                   is described below in the description of the  KASE
                   argument.
    
         ISGN      (workspace) INTEGER array, dimension (N)
    
         EST       (output) DOUBLE PRECISION
                   An estimate (a lower bound) for norm(A).
    
         KASE      (input/output) INTEGER
                   On the initial call to DLACON, KASE should be 0 or
                   -255.   If  KASE  was supplied as 0 on the initial
                   call then on an intermediate return, KASE will  be
                   1 or 2, indicating whether X should be overwritten
                   by A * X  or A' * X.  If KASE was supplied as -255
                   on  the  initial  call  then  on  an  intermediate
                   return, the low 8 bits of KASE will be 0  and  the
                   next  4  bits  will  contain  1  or  2, indicating
                   whether X should be overwritten by A * X  or A'  *
                   X.   On  the  final  return from DLACON, KASE will
                   again be 0.  If the initial call is made with KASE
                   equal  to -255 then this subroutine is MT-safe but
                   does not conform to the  standard  LAPACK  calling
                   sequence.   If  the initial call is made with KASE
                   equal to 0 then it is not MT-safe, but it conforms
                   to the standard LAPACK calling sequence.
    
    FURTHER DETAILS
         Contributed by Nick Higham, University of Manchester.
         Originally named SONEST, dated 27 Jun 16, 1988.
    
         Reference: N.J. Higham, "FORTRAN codes  for  estimating  the
         one-norm  of  a real or complex matrix, with applications to
         condition estimation", ACM Trans. Math. Soft., vol. 14,  no.
         4, pp. 381-396, December 1988.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру