NAME
dhsein - use inverse iteration to find specified right
and/or left eigenvectors of a real upper Hessenberg matrix H
SYNOPSIS
SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH,
WR, WI, VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL,
IFAILR, INFO )
CHARACTER EIGSRC, INITV, SIDE
INTEGER INFO, LDH, LDVL, LDVR, M, MM, N
LOGICAL SELECT( * )
INTEGER IFAILL( * ), IFAILR( * )
DOUBLE PRECISION H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
WI( * ), WORK( * ), WR( * )
#include <sunperf.h>
void dhsein(char side, char eigsrc, char initv, int *select,
int n, double *h, int ldh, double *wr, double *wi,
double * vl, int ldvl, double *vr, int ldvr, int
mm, int *m, int *ifaill, int *ifailr, int *info);
PURPOSE
DHSEIN uses inverse iteration to find specified right and/or
left eigenvectors of a real upper Hessenberg matrix H.
The right eigenvector x and the left eigenvector y of the
matrix H corresponding to an eigenvalue w are defined by:
H * x = w * x, y**h * H = w * y**h
where y**h denotes the conjugate transpose of the vector y.
ARGUMENTS
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
EIGSRC (input) CHARACTER*1
Specifies the source of eigenvalues supplied in
(WR,WI):
= 'Q': the eigenvalues were found using DHSEQR;
thus, if H has zero subdiagonal elements, and so
is block-triangular, then the j-th eigenvalue can
be assumed to be an eigenvalue of the block con-
taining the j-th row/column. This property allows
DHSEIN to perform inverse iteration on just one
diagonal block. = 'N': no assumptions are made on
the correspondence between eigenvalues and diago-
nal blocks. In this case, DHSEIN must always per-
form inverse iteration using the whole matrix H.
INITV (input) CHARACTER*1
= 'N': no initial vectors are supplied;
= 'U': user-supplied initial vectors are stored in
the arrays VL and/or VR.
SELECT (input/output) LOGICAL array, dimension (N)
Specifies the eigenvectors to be computed. To
select the real eigenvector corresponding to a
real eigenvalue WR(j), SELECT(j) must be set to
.TRUE.. To select the complex eigenvector
corresponding to a complex eigenvalue
(WR(j),WI(j)), with complex conjugate
(WR(j+1),WI(j+1)), either SELECT(j) or SELECT(j+1)
or both must be set to
Each eigenvector is normalized so that the element of larg-
est magnitude has magnitude 1; here the magnitude of a com-
plex number (x,y) is taken to be |x|+|y|.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |