NAME dgglse - solve the linear equality-constrained least squares (LSE) problem SYNOPSIS SUBROUTINE DGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK, INFO ) INTEGER INFO, LDA, LDB, LWORK, M, N, P DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( * ), D( * ), WORK( * ), X( * ) #include <sunperf.h> void dgglse(int m, int n, int p, double *da, int lda, double *db, int ldb, double *dc, double *d, double *dx, int *info) ; PURPOSE DGGLSE solves the linear equality-constrained least squares (LSE) problem: minimize || c - A*x ||_2 subject to B*x = d where A is an M-by-N matrix, B is a P-by-N matrix, c is a given M-vector, and d is a given P-vector. It is assumed that P <= N <= M+P, and rank(B) = P and rank( ( A ) ) = N. ( ( B ) ) These conditions ensure that the LSE problem has a unique solution, which is obtained using a GRQ factorization of the matrices B and A. ARGUMENTS M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrices A and B. N >= 0. P (input) INTEGER The number of rows of the matrix B. 0 <= P <= N <= M+P. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A is des- troyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). B (input/output) DOUBLE PRECISION array, dimension (LDB,N) On entry, the P-by-N matrix B. On exit, B is des- troyed. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,P). C (input/output) DOUBLE PRECISION array, dimension (M) On entry, C contains the right hand side vector for the least squares part of the LSE problem. On exit, the residual sum of squares for the solution is given by the sum of squares of elements N-P+1 to M of vector C. D (input/output) DOUBLE PRECISION array, dimension (P) On entry, D contains the right hand side vector for the constrained equation. On exit, D is des- troyed. X (output) DOUBLE PRECISION array, dimension (N) On exit, X is the solution of the LSE problem. WORK (workspace/output) DOUBLE PRECISION array, dimen- sion (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,M+N+P). For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB, where NB is an upper bound for the optimal blocksizes for DGEQRF, SGERQF, DORMQR and SORMRQ. INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an ille- gal value.
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |