NAME
dgeev - compute for an N-by-N real nonsymmetric matrix A,
the eigenvalues and, optionally, the left and/or right
eigenvectors
SYNOPSIS
SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL,
VR, LDVR, WORK, LWORK, INFO )
CHARACTER JOBVL, JOBVR
INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
DOUBLE PRECISION A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
WI( * ), WORK( * ), WR( * )
#include <sunperf.h>
void dgeev(char jobvl, char jobvr, int n, double *da, int
lda, double *wr, double *wi, double *vl, int ldvl,
double *vr, int ldvr, int *info) ;
PURPOSE
DGEEV computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvec-
tors.
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean
norm equal to 1 and largest component real.
ARGUMENTS
JOBVL (input) CHARACTER*1
= 'N': left eigenvectors of A are not computed;
= 'V': left eigenvectors of A are computed.
JOBVR (input) CHARACTER*1
= 'N': right eigenvectors of A are not computed;
= 'V': right eigenvectors of A are computed.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension
(LDA,N)
On entry, the N-by-N matrix A. On exit, A has
been overwritten.
LDA (input) INTEGER
The leading dimension of the array A. LDA >=
max(1,N).
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension
(N) WR and WI contain the real and imaginary
parts, respectively, of the computed eigenvalues.
Complex conjugate pairs of eigenvalues appear con-
secutively with the eigenvalue having the positive
imaginary part first.
VL (output) DOUBLE PRECISION array, dimension
(LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are
stored one after another in the columns of VL, in
the same order as their eigenvalues. If JOBVL =
'N', VL is not referenced. If the j-th eigenvalue
is real, then u(j) = VL(:,j), the j-th column of
VL. If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, then u(j) = VL(:,j) +
i*VL(:,j+1) and
u(j+1) = VL(:,j) - i*VL(:,j+1).
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1;
if JOBVL = 'V', LDVL >= N.
VR (output) DOUBLE PRECISION array, dimension
(LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are
stored one after another in the columns of VR, in
the same order as their eigenvalues. If JOBVR =
'N', VR is not referenced. If the j-th eigenvalue
is real, then v(j) = VR(:,j), the j-th column of
VR. If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, then v(j) = VR(:,j) +
i*VR(:,j+1) and
v(j+1) = VR(:,j) - i*VR(:,j+1).
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1;
if JOBVR = 'V', LDVR >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimen-
sion (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >=
max(1,3*N), and if JOBVL = 'V' or JOBVR = 'V',
LWORK >= 4*N. For good performance, LWORK must
generally be larger.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value.
> 0: if INFO = i, the QR algorithm failed to com-
pute all the eigenvalues, and no eigenvectors have
been computed; elements i+1:N of WR and WI contain
eigenvalues which have converged.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |