NAME
cungrq - generate an M-by-N complex matrix Q with orthonor-
mal rows,
SYNOPSIS
SUBROUTINE CUNGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
INTEGER INFO, K, LDA, LWORK, M, N
COMPLEX A( LDA, * ), TAU( * ), WORK( LWORK )
#include <sunperf.h>
void cungrq(int m, int n, int k, complex *ca, int lda, com-
plex *tau, int *info) ;
PURPOSE
CUNGRQ generates an M-by-N complex matrix Q with orthonormal
rows, which is defined as the last M rows of a product of K
elementary reflectors of order N
Q = H(1)' H(2)' . . . H(k)'
as returned by CGERQF.
ARGUMENTS
M (input) INTEGER
The number of rows of the matrix Q. M >= 0.
N (input) INTEGER
The number of columns of the matrix Q. N >= M.
K (input) INTEGER
The number of elementary reflectors whose product
defines the matrix Q. M >= K >= 0.
A (input/output) COMPLEX array, dimension (LDA,N)
On entry, the (m-k+i)-th row must contain the vec-
tor which defines the elementary reflector H(i),
for i = 1,2,...,k, as returned by CGERQF in the
last k rows of its array argument A. On exit, the
M-by-N matrix Q.
LDA (input) INTEGER
The first dimension of the array A. LDA >=
max(1,M).
TAU (input) COMPLEX array, dimension (K)
TAU(i) must contain the scalar factor of the
elementary reflector H(i), as returned by CGERQF.
WORK (workspace/output) COMPLEX array, dimension
(LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >=
max(1,M). For optimum performance LWORK >= M*NB,
where NB is the optimal blocksize.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument has an ille-
gal value
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |