NAME
ctbrfs - provide error bounds and backward error estimates
for the solution to a system of linear equations with a tri-
angular band coefficient matrix
SYNOPSIS
SUBROUTINE CTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, KD, LDAB, LDB, LDX, N, NRHS
REAL BERR( * ), FERR( * ), RWORK( * )
COMPLEX AB( LDAB, * ), B( LDB, * ), WORK( * ), X( LDX, * )
#include <sunperf.h>
void ctbrfs(char uplo, char trans, char diag, int n, int kd,
int nrhs, complex *cab, int ldab, complex *cb, int
ldb, complex *cx, int ldx, float *ferr, float
*berr, int *info) ;
PURPOSE
CTBRFS provides error bounds and backward error estimates
for the solution to a system of linear equations with a tri-
angular band coefficient matrix.
The solution matrix X must be computed by CTBTRS or some
other means before entering this routine. CTBRFS does not
do iterative refinement because doing so cannot improve the
backward error.
ARGUMENTS
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of
the triangular band matrix A. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrices B and X. NRHS >= 0.
AB (input) COMPLEX array, dimension (LDAB,N)
The upper or lower triangular band matrix A,
stored in the first kd+1 rows of the array. The
j-th column of A is stored in the j-th column of
the array AB as follows: if UPLO = 'U',
AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if
UPLO = 'L', AB(1+i-j,j) = A(i,j) for
j<=i<=min(n,j+kd). If DIAG = 'U', the diagonal
elements of A are not referenced and are assumed
to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >=
KD+1.
B (input) COMPLEX array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,N).
X (input) COMPLEX array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >=
max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solu-
tion vector X(j) (the j-th column of the solution
matrix X). If XTRUE is the true solution
corresponding to X(j), FERR(j) is an estimated
upper bound for the magnitude of the largest ele-
ment in (X(j) - XTRUE) divided by the magnitude of
the largest element in X(j). The estimate is as
reliable as the estimate for RCOND, and is almost
always a slight overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each
solution vector X(j) (i.e., the smallest relative
change in any element of A or B that makes X(j) an
exact solution).
WORK (workspace) COMPLEX array, dimension (2*N)
RWORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |