NAME
cppco - compute a Cholesky factorization and condition
number of a symmetric positive definite matrix A in packed
storage. If the condition number is not needed then xPPFA
is slightly faster. It is typical to follow a call to xPPCO
with a call to xPPSL to solve Ax = b or to xPPDI to compute
the determinant and inverse of A.
SYNOPSIS
SUBROUTINE DPPCO (DA, N, DRCOND, DWORK, INFO)
SUBROUTINE SPPCO (SA, N, SRCOND, SWORK, INFO)
SUBROUTINE ZPPCO (ZA, N, DRCOND, ZWORK, INFO)
SUBROUTINE CPPCO (CA, N, SRCOND, CWORK, INFO)
#include <sunperf.h>
void dppco(double *dap, int n, double *drcond, int *info) ;
void sppco(float *sap, int n, float *srcond, int *info) ;
void zppco(doublecomplex *zap, int n, double *drcond, int
*info) ;
void cppco(complex *cap, int n, float *srcond, int *info) ;
ARGUMENTS
xA On entry, the upper triangle of the matrix A. On
exit, a Cholesky factorization of the matrix A.
N Order of the matrix A. N * 0.
xRCOND On exit, an estimate of the reciprocal condition
number of A. 0.0 <= RCOND <= 1.0. As the value
of RCOND gets smaller, operations with A such as
solving Ax = b may become less stable. If RCOND
satisfies RCOND + 1.0 = 1.0 then A may be singular
to working precision.
xWORK Scratch array with a dimension of N.
INFO On exit:
INFO = 0 Subroutine completed normally.
INFO * 0 Returns a value k if the leading minor
of order k is not positive definite.
SAMPLE PROGRAM
PROGRAM TEST
IMPLICIT NONE
C
INTEGER LENGTA, N
PARAMETER (N = 4)
PARAMETER (LENGTA = (N * N + N) / 2)
C
DOUBLE PRECISION A(LENGTA), B(N), RCOND, WORK(N)
INTEGER INFO
C
EXTERNAL DPPCO, DPPSL
C
C Initialize the array A to store in packed symmetric storage
C mode the matrix A shown below. Initialize the array B to store
C the matrix B shown below.
C
C 4 3 2 1 60
C A = 3 4 3 2 b = 20
C 2 3 4 3 20
C 1 2 3 4 60
C
DATA A / 4.0D0, 3.0D0, 4.0D0, 2.0D0, 3.0D0, 4.0D0,
$ 1.0D0, 2.0D0, 3.0D0, 4.0D0 /
DATA B / 6.0D1, 2.0D1, 2.0D1, 6.0D1 /
C
PRINT 1000
PRINT 1010, A(1), A(2), A(4), A(7)
PRINT 1010, A(2), A(3), A(5), A(8)
PRINT 1010, A(4), A(5), A(6), A(9)
PRINT 1010, A(7), A(8), A(9), A(10)
PRINT 1020
PRINT 1030, B
CALL DPPCO (A, N, RCOND, WORK, INFO)
IF ((RCOND + 1.0D0) .EQ. RCOND) THEN
PRINT 1040
END IF
CALL DPPSL (A, N, B)
PRINT 1050, RCOND
PRINT 1060
PRINT 1030, B
C
1000 FORMAT (1X, 'A in full form:')
1010 FORMAT (5(3X, F7.3))
1020 FORMAT (/1X, 'b:')
1030 FORMAT (3X, F7.3)
1040 FORMAT (1X, 'A may be singular to working precision.')
1050 FORMAT (/1X, 'Reciprocal condition of A:', F5.2)
1060 FORMAT (/1X, 'A**(-1) * b:')
C
END
SAMPLE OUTPUT
A in full form:
4.000 3.000 2.000 1.000
3.000 4.000 3.000 2.000
2.000 3.000 4.000 3.000
1.000 2.000 3.000 4.000
b:
60.000
20.000
20.000
60.000
Reciprocal condition of A: 0.04
A**(-1) * b:
32.000
-20.000
-20.000
32.000
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |