NAME cporfs - improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian positive definite, SYNOPSIS SUBROUTINE CPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) CHARACTER UPLO INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS REAL BERR( * ), FERR( * ), RWORK( * ) COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), WORK( * ), X( LDX, * ) #include <sunperf.h> void cporfs(char uplo, int n, int nrhs, complex *ca, int lda, complex *af, int ldaf, complex *cb, int ldb, complex *cx, int ldx, float *ferr, float *berr, int *info); PURPOSE CPORFS improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian positive definite, and provides error bounds and backward error esti- mates for the solution. ARGUMENTS UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. A (input) COMPLEX array, dimension (LDA,N) The Hermitian matrix A. If UPLO = 'U', the lead- ing N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not refer- enced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper tri- angular part of A is not referenced. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). AF (input) COMPLEX array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as com- puted by CPOTRF. LDAF (input) INTEGER The leading dimension of the array AF. LDAF >= max(1,N). B (input) COMPLEX array, dimension (LDB,NRHS) The right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input/output) COMPLEX array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by CPOTRS. On exit, the improved solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR (output) REAL array, dimension (NRHS) The estimated forward error bound for each solu- tion vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest ele- ment in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR (output) REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK (workspace) COMPLEX array, dimension (2*N) RWORK (workspace) REAL array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an ille- gal value
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |