The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

clasr (3)
  • >> clasr (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         clasr - perform the transformation   A := P*A, when  SIDE  =
         'L'  or  'l' ( Left-hand side )   A := A*P', when SIDE = 'R'
         or 'r' ( Right-hand side )  where A is an  m  by  n  complex
         matrix and P is an orthogonal matrix,
    
    SYNOPSIS
         SUBROUTINE CLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
    
         CHARACTER DIRECT, PIVOT, SIDE
    
         INTEGER LDA, M, N
    
         REAL C( * ), S( * )
    
         COMPLEX A( LDA, * )
    
    
    
         #include <sunperf.h>
    
         void clasr(char side, char pivot, char direct, int m, int n,
                   float *sc, float *s, complex *ca, int lda);
    
    PURPOSE
         CLASR   performs the transformation consisting of a sequence
         of  plane  rotations  determined by the parameters PIVOT and
         DIRECT as follows ( z = m when SIDE = 'L' or 'l' and z  =  n
         when SIDE = 'R' or 'r' ):
    
         When  DIRECT = 'F' or 'f'  ( Forward sequence ) then
    
            P = P( z - 1 )*...*P( 2 )*P( 1 ),
    
         and when DIRECT = 'B' or 'b'  ( Backward sequence ) then
    
            P = P( 1 )*P( 2 )*...*P( z - 1 ),
    
         where  P( k ) is a plane rotation matrix for  the  following
         planes:
    
            when  PIVOT = 'V' or 'v'  ( Variable pivot ),
               the plane ( k, k + 1 )
    
            when  PIVOT = 'T' or 't'  ( Top pivot ),
               the plane ( 1, k + 1 )
    
            when  PIVOT = 'B' or 'b'  ( Bottom pivot ),
               the plane ( k, z )
    
         c( k ) and s( k )  must contain the  cosine  and  sine  that
         define  the  matrix   P( k ).  The two by two plane rotation
         part of the matrix P( k ), R( k ), is assumed to be  of  the
         form
    
            R( k ) = (  c( k )  s( k ) ).
                     ( -s( k )  c( k ) )
    
    
    ARGUMENTS
         SIDE      (input) CHARACTER*1
                   Specifies whether the plane rotation matrix  P  is
                   applied  to  A  on  the left or the right.  = 'L':
                   Left, compute A := P*A
                   = 'R':  Right, compute A:= A*P'
    
         DIRECT    (input) CHARACTER*1
                   Specifies whether  P  is  a  forward  or  backward
                   sequence of plane rotations.  = 'F':  Forward, P =
                   P( z - 1 )*...*P( 2 )*P( 1 )
                   = 'B':  Backward, P = P( 1 )*P( 2 )*...*P( z - 1 )
    
         PIVOT     (input) CHARACTER*1
                   Specifies the plane for  which  P(k)  is  a  plane
                   rotation  matrix.   =  'V':   Variable  pivot, the
                   plane (k,k+1)
                   = 'T':  Top pivot, the plane (1,k+1)
                   = 'B':  Bottom pivot, the plane (k,z)
    
         M         (input) INTEGER
                   The number of rows of the matrix A.  If m <= 1, an
                   immediate return is effected.
    
         N         (input) INTEGER
                   The number of columns of the matrix A.  If n <= 1,
                   an immediate return is effected.
    
                   C, S    (input) REAL arrays,  dimension  (M-1)  if
                   SIDE  = 'L' (N-1) if SIDE = 'R' c(k) and s(k) con-
                   tain the cosine and sine that  define  the  matrix
                   P(k).   The  two by two plane rotation part of the
                   matrix P(k), R(k), is assumed to be of the form R(
                   k ) = (  c( k )  s( k ) ).  ( -s( k )  c( k ) )
    
         A         (input/output) COMPLEX array, dimension (LDA,N)
                   The m by n matrix A.  On exit, A is overwritten by
                   P*A if SIDE = 'R' or by A*P' if SIDE = 'L'.
    
         LDA       (input) INTEGER
                   The leading dimension of  the  array  A.   LDA  >=
                   max(1,M).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру