NAME
clagtm - perform a matrix-vector product of the form B :=
alpha * A * X + beta * B where A is a tridiagonal matrix of
order N, B and X are N by NRHS matrices, and alpha and beta
are real scalars, each of which may be zero, one, or minus
one
SYNOPSIS
SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX,
BETA, B, LDB )
CHARACTER TRANS
INTEGER LDB, LDX, N, NRHS
REAL ALPHA, BETA
COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), X( LDX, * )
#include <sunperf.h>
void clagtm(char trans, int n, int nrhs, float alpha, com-
plex *dl, complex *d, complex *du, complex *cx,
int ldx,
float sbeta, complex *cb, int ldb) ;
PURPOSE
CLAGTM performs a matrix-vector product of the form
ARGUMENTS
TRANS (input) CHARACTER
Specifies the operation applied to A. = 'N': No
transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A**T * X + beta
* B
= 'C': Conjugate transpose, B := alpha * A**H * X
+ beta * B
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrices X and B.
ALPHA (input) REAL
The scalar alpha. ALPHA must be 0., 1., or -1.;
otherwise, it is assumed to be 0.
DL (input) COMPLEX array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D (input) COMPLEX array, dimension (N)
The diagonal elements of T.
DU (input) COMPLEX array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X (input) COMPLEX array, dimension (LDX,NRHS)
The N by NRHS matrix X. LDX (input) INTEGER
The leading dimension of the array X. LDX >=
max(N,1).
BETA (input) REAL
The scalar beta. BETA must be 0., 1., or -1.;
otherwise, it is assumed to be 1.
B (input/output) COMPLEX array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B. On exit, B is
overwritten by the matrix expression B := alpha *
A * X + beta * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(N,1).
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |