NAME claed0 - the divide and conquer method, CLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermi- tian matrix and corresponding eigenvectors of the dense or band matrix SYNOPSIS SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK, INFO ) INTEGER INFO, LDQ, LDQS, N, QSIZ INTEGER IWORK( * ) REAL D( * ), E( * ), RWORK( * ) COMPLEX Q( LDQ, * ), QSTORE( LDQS, * ) #include <sunperf.h> void claed0(int qsiz, int n, float *d, float *e, complex *q, int ldq, complex *qstore, int ldqs, int *info) ; PURPOSE Using the divide and conquer method, CLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermi- tian matrix and corresponding eigenvectors of the dense or band matrix. ARGUMENTS QSIZ (input) INTEGER The dimension of the unitary matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. D (input/output) REAL array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix. On exit, the eigenvalues in ascending order. E (input/output) REAL array, dimension (N-1) On entry, the off-diagonal elements of the tridi- agonal matrix. On exit, E has been destroyed. Q (input/output) COMPLEX array, dimension (LDQ,N) On entry, Q must contain an QSIZ x N matrix whose columns unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermi- tian matrix to a (reducible) symmetric tridiagonal matrix. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,N). IWORK (workspace) INTEGER array, the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N ( lg( N ) = smallest integer k such that 2^k >= N ) RWORK (workspace) REAL array, dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N ) = smallest integer k such that 2^k >= N ) QSTORE (workspace) COMPLEX array, dimension (LDQS, N) Used to store parts of the eigenvector matrix when the updating matrix multiplies take place. LDQS (input) INTEGER The leading dimension of the array QSTORE. LDQS >= max(1,N). INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an ille- gal value. > 0: The algorithm failed to compute an eigen- value while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |