NAME
chpevd - compute all the eigenvalues and, optionally, eigen-
vectors of a complex Hermitian matrix A in packed storage
SYNOPSIS
SUBROUTINE CHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK,
LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
CHARACTER JOBZ, UPLO
INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
INTEGER IWORK( * )
REAL RWORK( * ), W( * )
COMPLEX AP( * ), WORK( * ), Z( LDZ, * )
#include <sunperf.h>
void chpevd(char jobz, char uplo, int n, complex *cap, float
*w, complex *cz, int ldz, int *info);
PURPOSE
CHPEVD computes all the eigenvalues and, optionally, eigen-
vectors of a complex Hermitian matrix A in packed storage.
If eigenvectors are desired, it uses a divide and conquer
algorithm.
The divide and conquer algorithm makes very mild assumptions
about floating point arithmetic. It will work on machines
with a guard digit in add/subtract, or on those binary
machines without guard digits which subtract like the Cray
X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
fail on hexadecimal or decimal machines without guard
digits, but we know of none.
ARGUMENTS
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) COMPLEX array, dimension
(N*(N+1)/2)
On entry, the upper or lower triangle of the Her-
mitian matrix A, packed columnwise in a linear
array. The j-th column of A is stored in the
array AP as follows: if UPLO = 'U', AP(i + (j-
1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i
+ (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, AP is overwritten by values generated
during the reduction to tridiagonal form. If UPLO
= 'U', the diagonal and first superdiagonal of the
tridiagonal matrix T overwrite the corresponding
elements of A, and if UPLO = 'L', the diagonal and
first subdiagonal of T overwrite the corresponding
elements of A.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) COMPLEX array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the
orthonormal eigenvectors of the matrix A, with the
i-th column of Z holding the eigenvector associ-
ated with W(i). If JOBZ = 'N', then Z is not
referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1,
and if JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) COMPLEX array, dimension
(LWORK)
On exit, if LWORK > 0, WORK(1) returns the optimal
LWORK.
LWORK (input) INTEGER
The dimension of array WORK. If N <= 1,
LWORK must be at least 1. If JOBZ = 'N' and N >
1, LWORK must be at least N. If JOBZ = 'V' and N
> 1, LWORK must be at least 2*N.
RWORK (workspace/output) REAL array,
dimension (LRWORK) On exit, if LRWORK > 0,
RWORK(1) returns the optimal LRWORK.
LRWORK (input) INTEGER
The dimension of array RWORK. If N <= 1,
LRWORK must be at least 1. If JOBZ = 'N' and N >
1, LRWORK must be at least N. If JOBZ = 'V' and N
> 1, LRWORK must be at least 1 + 4*N + 2*N*lg N +
3*N**2 , where lg( N ) = smallest integer k such
that 2**k >= N.
IWORK (workspace/output) INTEGER array, dimension
(LIWORK)
On exit, if LIWORK > 0, IWORK(1) returns the
optimal LIWORK.
LIWORK (input) INTEGER
The dimension of array IWORK. If JOBZ = 'N' or N
<= 1, LIWORK must be at least 1. If JOBZ = 'V'
and N > 1, LIWORK must be at least 2 + 5*N.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value.
> 0: if INFO = i, the algorithm failed to con-
verge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |