NAME
chidi - compute the determinant, inertia, and inverse of a
Hermitian matrix A, which has been UDU-factored by xHICO or
xHIFA.
SYNOPSIS
SUBROUTINE ZHIDI (ZA, LDA, N, IPIVOT, DDET, INERT, ZWORK,
JOB)
SUBROUTINE CHIDI (CA, LDA, N, IPIVOT, SDET, INERT, CWORK,
JOB)
#include <sunperf.h>
void zhidi(doublecomplex *za, int lda, int n, int *ipivot,
double *det, int *inert, int job) ;
void chidi(complex *ca, int lda, int n, int *ipivot, float
*det, int *inert, int job) ;
ARGUMENTS
xA On entry, the UDU factorization of the matrix A,
as computed by xHICO or xHIFA. On exit, if the c
digit of JOB <> 0, then the upper triangle of A
contains the upper triangle of the inverse of the
original matrix A if the inverse was requested,
otherwise unchanged. The strict lower triangle of
A is not referenced.
LDA Leading dimension of the array A as specified in a
dimension or type statement. LDA >= max(1,N).
N Order of the original matrix A. N >= 0.
IPIVOT Pivot vector as computed by xHICO or xHIFA.
xDET On exit, if the b digit of JOB >= 0, then DET con-
tains the determinant of the matrix A. The deter-
minant is stored as b * (10 ** expon) where b is
stored in DET(1) and expon is stored in DET(2).
1.0 <= |DET(1)| <= 10.0 or DET(1) = 0.0. If the
b digit of JOB <> 0, DET is not referenced.
INERT On exit, if the a digit of JOB <> 0, then INERT
contains an integer triplet where:
INERT(1) = number of positive eigenvalues
INERT(2) = number of negative eigenvalues
INERT(3) = number of zero eigenvalues
If the a digit of JOB = 0 then INERT is not refer-
enced.
xWORK Scratch array with a dimension of N.
JOB Integer in the form abc; determines operation the
subroutine will perform:
a <> 0 Compute the inertia.
b <> 0 Compute the determinant.
c <> 0 Compute the inverse.
SAMPLE PROGRAM
PROGRAM TEST
IMPLICIT NONE
C
INTEGER IDODET, IDOINR, IDOINV, LDA, N
PARAMETER (IDODET = 10)
PARAMETER (IDOINR = 100)
PARAMETER (IDOINV = 1)
PARAMETER (N = 3)
PARAMETER (LDA = 3)
C
REAL DET(2), RCOND
COMPLEX A(LDA,N), WORK(N)
INTEGER ICOL, INERT(3), IPIVOT(N), IROW, JOB
C
EXTERNAL CHICO, CHIDI
C
C Initialize the array A to store the matrix A shown below.
C
C 1 1+2i 1+2i
C A = 1+2i 6 -2+6i
C 1+2i -2+6i 11
C
DATA A / (1.0,0.0), (8E8,8E8), (8E8,8E8),
$ (1.0,-2.0), (6.0,0.0), (8E8,8E8),
$ (1.0,-2.0), (6.0,-2.0), (11.0,0.0) /
C
PRINT 1000
DO 100, IROW = 1, N
PRINT 1010, (CONJG(A(ICOL,IROW)), ICOL = 1, IROW),
$ (A(IROW,ICOL), ICOL = IROW + 1, N)
100 CONTINUE
PRINT 1020
DO 110, IROW = 1, N
PRINT 1010, (A(IROW,ICOL), ICOL = 1, N)
110 CONTINUE
CALL CHICO (A, LDA, N, IPIVOT, RCOND, WORK)
PRINT 1030, RCOND
IF ((RCOND + 1.0) .EQ. 1.0) THEN
PRINT 1040
END IF
JOB = IDOINR + IDODET + IDOINV
CALL CHIDI (A, LDA, N, IPIVOT, DET, INERT, WORK, JOB)
PRINT 1050, DET(1) * (10.0D0 ** DET(2))
PRINT 1060, INERT
PRINT 1070
DO 120, IROW = 1, N
PRINT 1010, (CONJG(A(ICOL,IROW)), ICOL = 1, IROW),
$ (A(IROW,ICOL), ICOL = IROW + 1, N)
120 CONTINUE
C
1000 FORMAT (1X, 'A in full form:')
1010 FORMAT (4(: 3X, '(', F5.1, ',', F5.1, ')'))
1020 FORMAT (/1X, 'A in Hermitian form: (* in unused elements)')
1030 FORMAT (/1X, 'Reciprocal condition number of A:', F6.3)
1040 FORMAT (1X, 'A may be singular to working precision.')
1050 FORMAT (/1X, 'Determinant of A: ', F6.3)
1060 FORMAT (1X, 'Inertia of A: <', I1, ',', I1, ',', I1, '>')
1070 FORMAT (/1X, 'A**(-1):')
C
END
SAMPLE OUTPUT
A in full form:
( 1.0, 0.0) ( 1.0, -2.0) ( 1.0, -2.0)
( 1.0, 2.0) ( 6.0, 0.0) ( 6.0, -2.0)
( 1.0, 2.0) ( 6.0, 2.0) ( 11.0, 0.0)
A in Hermitian form: (* in unused elements)
( 1.0, 0.0) ( 1.0, -2.0) ( 1.0, -2.0)
(*****,*****) ( 6.0, 0.0) ( 6.0, -2.0)
(*****,*****) (*****,*****) ( 11.0, 0.0)
Reciprocal condition number of A: 0.001
Determinant of A: 0.008
Inertia of A: <3,0,0>
A**(-1):
( 26.0, 0.0) ( -1.0, 12.0) ( -4.0, -2.0)
( -1.0,-12.0) ( 6.0, 0.0) ( -1.0, 2.0)
( -4.0, 2.0) ( -1.0, -2.0) ( 1.0, 0.0)
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |