NAME
cgerc - perform the rank 1 operation A := alpha*x*conjg(
y' ) + A
SYNOPSIS
SUBROUTINE CGERC ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA )
COMPLEX ALPHA
INTEGER INCX, INCY, LDA, M, N
COMPLEX A( LDA, * ), X( * ), Y( * )
#include <sunperf.h>
void cgerc(int m, int n, complex *calpha, complex * x, int
incx, complex *cy, int incy, complex *ca, int lda)
;
PURPOSE
CGERC performs the rank 1 operation A := alpha*x*conjg( y'
) + A where alpha is a scalar, x is an m element vector, y
is an n element vector and A is an m by n matrix.
PARAMETERS
M - INTEGER.
On entry, M specifies the number of rows of the
matrix A. M must be at least zero. Unchanged on
exit.
N - INTEGER.
On entry, N specifies the number of columns of the
matrix A. N must be at least zero. Unchanged on
exit.
ALPHA - COMPLEX .
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
X - COMPLEX array of dimension at least
( 1 + ( m - 1 )*abs( INCX ) ). Before entry, the
incremented array X must contain the m element
vector x. Unchanged on exit.
INCX - INTEGER.
On entry, INCX specifies the increment for the
elements of X. INCX must not be zero. Unchanged
on exit.
Y - COMPLEX array of dimension at least
( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the
incremented array Y must contain the n element
vector y. Unchanged on exit.
INCY - INTEGER.
On entry, INCY specifies the increment for the
elements of Y. INCY must not be zero. Unchanged
on exit.
A - COMPLEX array of DIMENSION ( LDA, n ).
Before entry, the leading m by n part of the array
A must contain the matrix of coefficients. On
exit, A is overwritten by the updated matrix.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A
as declared in the calling (sub) program. LDA must
be at least max( 1, m ). Unchanged on exit.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |