The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

cgeqpf (3)
  • >> cgeqpf (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         cgeqpf - compute a QR factorization with column pivoting  of
         a complex M-by-N matrix A
    
    SYNOPSIS
         SUBROUTINE CGEQPF( M, N, A, LDA,  JPVT,  TAU,  WORK,  RWORK,
                   INFO )
    
         INTEGER INFO, LDA, M, N
    
         INTEGER JPVT( * )
    
         REAL RWORK( * )
    
         COMPLEX A( LDA, * ), TAU( * ), WORK( * )
    
    
    
         #include <sunperf.h>
    
         void cgeqpf(int m, int n, complex *ca, int lda, int *jpivot,
                   complex *tau, int *info) ;
    
    PURPOSE
         CGEQPF computes a QR factorization with column pivoting of a
         complex M-by-N matrix A: A*P = Q*R.
    
    
    ARGUMENTS
         M         (input) INTEGER
                   The number of rows of the matrix A. M >= 0.
    
         N         (input) INTEGER
                   The number of columns of the matrix A. N >= 0
    
         A         (input/output) COMPLEX array, dimension (LDA,N)
                   On entry, the M-by-N matrix A.  On exit, the upper
                   triangle  of  the array contains the min(M,N)-by-N
                   upper triangular matrix R; the elements below  the
                   diagonal,  together  with the array TAU, represent
                   the orthogonal matrix Q as a product  of  min(m,n)
                   elementary reflectors.
    
         LDA       (input) INTEGER
                   The leading dimension  of  the  array  A.  LDA  >=
                   max(1,M).
    
         JPVT      (input/output) INTEGER array, dimension (N)
                   On entry, if JPVT(i) .ne. 0, the i-th column of  A
                   is  permuted  to  the  front  of  A*P  (a  leading
                   column); if JPVT(i) = 0, the i-th column of A is a
                   free  column.   On  exit, if JPVT(i) = k, then the
                   i-th column of A*P was the k-th column of A.
    
         TAU       (output) COMPLEX array, dimension (min(M,N))
                   The scalar factors of the elementary reflectors.
    
         WORK      (workspace) COMPLEX array, dimension (N)
    
         RWORK     (workspace) REAL array, dimension (2*N)
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
    
    FURTHER DETAILS
         The matrix Q is  represented  as  a  product  of  elementary
         reflectors
    
            Q = H(1) H(2) . . . H(n)
    
         Each H(i) has the form
    
            H = I - tau * v * v'
    
         where tau is a complex scalar, and v  is  a  complex  vector
         with  v(1:i-1)  = 0 and v(i) = 1; v(i+1:m) is stored on exit
         in A(i+1:m,i).
    
         The matrix P is represented in jpvt as follows: If
            jpvt(j) = i
         then the jth column of P is the ith canonical unit vector.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру