The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

cgelq2 (3)
  • >> cgelq2 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         cgelq2 - compute an LQ factorization of a  complex  m  by  n
         matrix A
    
    SYNOPSIS
         SUBROUTINE CGELQ2( M, N, A, LDA, TAU, WORK, INFO )
    
         INTEGER INFO, LDA, M, N
    
         COMPLEX A( LDA, * ), TAU( * ), WORK( * )
    
    
    
         #include <sunperf.h>
    
         void cgelq2(int m, int n,  complex  *ca,  int  lda,  complex
                   *tau, int *info) ;
    
    PURPOSE
         CGELQ2 computes an LQ factorization of  a  complex  m  by  n
         matrix A:  A = L * Q.
    
    
    ARGUMENTS
         M         (input) INTEGER
                   The number of rows of the matrix A.  M >= 0.
    
         N         (input) INTEGER
                   The number of columns of the matrix A.  N >= 0.
    
         A         (input/output) COMPLEX array, dimension (LDA,N)
                   On entry, the m by n matrix A.  On exit, the  ele-
                   ments  on and below the diagonal of the array con-
                   tain the m by min(m,n) lower trapezoidal matrix  L
                   (L  is  lower  triangular if m <= n); the elements
                   above the diagonal, with the array TAU,  represent
                   the  unitary  matrix  Q as a product of elementary
                   reflectors (see Further Details).  LDA     (input)
                   INTEGER The leading dimension of the array A.  LDA
                   >= max(1,M).
    
         TAU       (output) COMPLEX array, dimension (min(M,N))
                   The scalar factors of  the  elementary  reflectors
                   (see Further Details).
    
         WORK      (workspace) COMPLEX array, dimension (M)
    
         INFO      (output) INTEGER
                   = 0: successful exit
                   < 0: if INFO = -i, the i-th argument had an  ille-
                   gal value
    
    FURTHER DETAILS
         The matrix Q is  represented  as  a  product  of  elementary
         reflectors
    
            Q = H(k)' . . . H(2)' H(1)', where k = min(m,n).
    
         Each H(i) has the form
    
            H(i) = I - tau * v * v'
    
         where tau is a complex scalar, and v  is  a  complex  vector
         with v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on
         exit in A(i,i+1:n), and tau in TAU(i).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру