The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

sgghrd (3)
  • >> sgghrd (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         sgghrd - reduce a pair of real matrices (A,B) to generalized
         upper  Hessenberg  form  using  orthogonal  transformations,
         where A is a general matrix and B is upper triangular
    
    SYNOPSIS
         SUBROUTINE SGGHRD( COMPQ, COMPZ, N, ILO,  IHI,  A,  LDA,  B,
                   LDB, Q, LDQ, Z, LDZ, INFO )
    
         CHARACTER COMPQ, COMPZ
    
         INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
    
         REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
    
    
    
         #include <sunperf.h>
    
         void sgghrd(char compq, char compz, int n, int ilo, int ihi,
                   float  *sa, int lda, float *sb, int ldb, float *q,
                   int ldq, float *sz, int ldz, int *info) ;
    
    PURPOSE
         SGGHRD reduces a pair of real matrices (A,B) to  generalized
         upper  Hessenberg  form  using  orthogonal  transformations,
         where A is a general matrix and B is upper triangular:  Q' *
         A * Z = H and Q' * B * Z = T, where H is upper Hessenberg, T
         is upper triangular, and Q and Z are orthogonal, and ' means
         transpose.
    
         The orthogonal matrices Q and Z are determined  as  products
         of  Givens rotations.  They may either be formed explicitly,
         or they may be postmultiplied into input matrices Q1 and Z1,
         so that
    
              Q1 * A * Z1' = (Q1*Q) * H * (Z1*Z)'
              Q1 * B * Z1' = (Q1*Q) * T * (Z1*Z)'
    
    
    ARGUMENTS
         COMPQ     (input) CHARACTER*1
                   = 'N': do not compute Q;
                   = 'I': Q is initialized to the  unit  matrix,  and
                   the orthogonal matrix Q is returned; = 'V': Q must
                   contain an orthogonal matrix Q1 on entry, and  the
                   product Q1*Q is returned.
    
         COMPZ     (input) CHARACTER*1
                   = 'N': do not compute Z;
                   = 'I': Z is initialized to the  unit  matrix,  and
                   the orthogonal matrix Z is returned; = 'V': Z must
                   contain an orthogonal matrix Z1 on entry, and  the
                   product Z1*Z is returned.
    
         N         (input) INTEGER
                   The order of the matrices A and B.  N >= 0.
    
         ILO       (input) INTEGER
                   IHI     (input) INTEGER It is assumed  that  A  is
                   already  upper  triangular  in  rows  and  columns
                   1:ILO-1 and IHI+1:N.  ILO and IHI are normally set
                   by  a  previous  call  to  SGGBAL;  otherwise they
                   should be set to 1 and N respectively.  1  <=  ILO
                   <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
    
         A         (input/output) REAL array, dimension (LDA, N)
                   On entry, the N-by-N general matrix to be reduced.
                   On exit, the upper triangle and the first subdiag-
                   onal of A are overwritten with the  upper  Hessen-
                   berg matrix H, and the rest is set to zero.
    
         LDA       (input) INTEGER
                   The leading dimension of  the  array  A.   LDA  >=
                   max(1,N).
    
         B         (input/output) REAL array, dimension (LDB, N)
                   On entry, the N-by-N upper  triangular  matrix  B.
                   On  exit,  the upper triangular matrix T = Q' B Z.
                   The elements below the diagonal are set to zero.
    
         LDB       (input) INTEGER
                   The leading dimension of  the  array  B.   LDB  >=
                   max(1,N).
    
         Q         (input/output) REAL array, dimension (LDQ, N)
                   If COMPQ='N':  Q is not referenced.
                   If COMPQ='I':  on entry, Q need not be set, and on
                   exit it contains the orthogonal matrix Q, where Q'
                   is the product of the Givens transformations which
                   are applied to A and B on the left.  If COMPQ='V':
                   on entry, Q must contain an orthogonal matrix  Q1,
                   and on exit this is overwritten by Q1*Q.
    
         LDQ       (input) INTEGER
                   The leading dimension of the array Q.  LDQ >= N if
                   COMPQ='V' or 'I'; LDQ >= 1 otherwise.
    
         Z         (input/output) REAL array, dimension (LDZ, N)
                   If COMPZ='N':  Z is not referenced.
                   If COMPZ='I':  on entry, Z need not be set, and on
                   exit it contains the orthogonal matrix Z, which is
                   the product of the  Givens  transformations  which
                   are   applied  to  A  and  B  on  the  right.   If
                   COMPZ='V':  on entry, Z must contain an orthogonal
                   matrix  Z1,  and  on  exit  this is overwritten by
                   Z1*Z.
    
         LDZ       (input) INTEGER
                   The leading dimension of the array Z.  LDZ >= N if
                   COMPZ='V' or 'I'; LDZ >= 1 otherwise.
    
         INFO      (output) INTEGER
                   = 0:  successful exit.
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
    
    FURTHER DETAILS
         This routine reduces A to Hessenberg  and  B  to  triangular
         form   by   an   unblocked   reduction,   as   described  in
         _Matrix_Computations_, by Golub and Van Loan (Johns  Hopkins
         Press.)
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру