NAME
dstevd - compute all eigenvalues and, optionally, eigenvec-
tors of a real symmetric tridiagonal matrix
SYNOPSIS
SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK,
IWORK, LIWORK, INFO )
CHARACTER JOBZ
INTEGER INFO, LDZ, LIWORK, LWORK, N
INTEGER IWORK( * )
DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
#include <sunperf.h>
void dstevd(char jobz, int n, double *d, double *e, double
*dz, int ldz, int *info) ;
PURPOSE
DSTEVD computes all eigenvalues and, optionally, eigenvec-
tors of a real symmetric tridiagonal matrix. If eigenvectors
are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions
about floating point arithmetic. It will work on machines
with a guard digit in add/subtract, or on those binary
machines without guard digits which subtract like the Cray
X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably
fail on hexadecimal or decimal machines without guard
digits, but we know of none.
ARGUMENTS
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension
(N)
On entry, the n diagonal elements of the tridiago-
nal matrix A. On exit, if INFO = 0, the eigen-
values in ascending order.
E (input/output) DOUBLE PRECISION array, dimension
(N)
On entry, the (n-1) subdiagonal elements of the
tridiagonal matrix A, stored in elements 1 to N-1
of E; E(N) need not be set, but is used by the
routine. On exit, the contents of E are des-
troyed.
Z (output) DOUBLE PRECISION array, dimension (LDZ,
N)
If JOBZ = 'V', then if INFO = 0, Z contains the
orthonormal eigenvectors of the matrix A, with the
i-th column of Z holding the eigenvector associ-
ated with D(i). If JOBZ = 'N', then Z is not
referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1,
and if JOBZ = 'V', LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK) On exit, if LWORK > 0, WORK(1)
returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If JOBZ = 'N'
or N <= 1 then LWORK must be at least 1. If JOBZ
= 'V' and N > 1 then LWORK must be at least ( 1 +
3*N + 2*N*lg N + 2*N**2 ), where lg( N ) = smal-
lest integer k such that 2**k >= N.
IWORK (workspace/output) INTEGER array, dimension
(LIWORK)
On exit, if LIWORK > 0, IWORK(1) returns the
optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. If JOBZ = 'N'
or N <= 1 then LIWORK must be at least 1. If JOBZ
= 'V' and N > 1 then LIWORK must be at least
2+5*N.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
> 0: if INFO = i, the algorithm failed to con-
verge; i off-diagonal elements of E did not con-
verge to zero.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |